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The stress relaxation effect in an incompressible elastico-viscous fluid is investi- 
gated for the case of the lubrication of line-contact rollers. Two extreme cases 
are considered: that of low pressures with rigid surfaces and constant viscosity 
and that of heavily loaded elasto-hydrodynamic lubrication. In  order to solve 
this problem, a new invariant material time derivative is suggested. This deriva- 
tive is referred to a co-ordinate system attached to the principal axes of the 
strain-rate tensor, while the former derivatives have been referred to the fluid 
particle. 1 6  is shown that, unlike the previous derivatives, the new one enables 
a separate parametric description of the stress relaxation process and the first 
normal-stress difference. The results show that a significant increase in the load 
capacity is obtained, owing to the relaxation time of the fluid. The investigation 
is for fluids with a relaxation time small compared with the transit time of the 
lubricant through the bearing. 

1. Introduction 
The aim of this study is to solve the problem of the hydrodynamic rolling 

bearing using an elastico-viscous fluid model in which the stress relaxation effect 
is of first order compared with the zero-order Newtonian viscosity. The relaxation 
process is described by the fluid time 7 (also called the relaxation time). The 
magnitude of this elastico-viscous parameter can be determined experimentally 
from the phase lag between the stress and strain rate in oscillatory flow. 

Hydrodynamic lubrication of gear-teeth and rolling-element bearings involves 
rapid changes in the shear rates of the fluid particles. Accordingly Cameron 
(1953), in view of many experiments, suggested that in such cases the relaxation 
time of ordinary mineral oils may have a significant role in improving the per- 
formance of the lubricant. Many lubrication fluids in common use today contain 
additives consisting of high molecular weight polymers. The addition of polymers 
to mineral oils makes them much more elastico-viscous in the sense that their 
relaxation time becomes much longer than that for ordinary mineral oils. It is 
well known that, unlike Newtonian fluids or ordinary mineral oils, elastico- 
viscous lubricants (such as polymer solutions) exhibit shear-rate and tempera- 
ture dependent viscosity and normal stresses in shear flow. In  order to isolate 
these complex rheological properties, only the stress relaxation effect is investi- 
gated here. It has been shown by Pearson (1967) that in one interpretation of 
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hydrodynamic lubrication the non-Newtonian viscosity is the dominant zero- 
order effect, while the contributions of the other elastico-viscous effects are of 
first or higher order. 

2. Relation to previous investigations 
The present study is a continuation of many previous investigations carried 

out in an effort to find the role of elastico-viscous fluids in lubrication. There is 
still disagreement between the experimental and theoretical results. Several 
experimental studies have suggested that elastico-viscous lubricants are superior 
in performance, but there is not yet any satisfactory theoretical explanation; 
for details, see recent discussions by Appeldorn (1968), Walters (1972) and 
Harnoy (1974). Most of the previous analytical work dealt with hydrodynamic 
journal bearings and led to the following conclusions (Reiner, Hanin & Harnoy 
1969; Harnoy 1971; Davies & Walters 1972; Harnoy & Hanin 1974). 

(i) The occurrence of a negative first normal-stress difference in simple shear 
of elastico-viscous liquids increases the load capacity of the lubrication film. 
In  a simple shear flow, u = yy and v = w = 0 (u, v and w are the velocity com- 
ponents in the orthogonal Cartesian directions x, y and x respectively). The first 
normal-stress difference Szz--SYy is between the direction of shear and the 
normal to it. The ratio of Szz- S,, to the shear stress S,, (this ratio is called the 
Weissenberg number) must reach the order of magnitude of lo4 in order to cause 
practical improvement capable of explaining the experiments with steady-state 
ordinary bearings. 

(ii) The second normal-stress difference X,, - X,, does not affect the load 
capacity in a full film, infinitely long bearing. In  short bearings the effect is 
negligible. 

(iii) The improvement cannot be accounted for by the different curve of 
viscosity us. shear rate and temperature; see Horowitz & Steidler (1960). 

These analytical results imply that the Weissenberg number must be very 
high. However, this assumption is very much in doubt and is still a matter of 
controversy. There is no experimental evidence for such a high first normal-stress 
difference and the maximum experimental values of the Weissenberg number 
reported for lubricants are of the order of thirty. Philippoff (1968) compared 
the results of different experimental methods. Since the previous analytical 
investigations are still in disagreement with the experiments, more research 
on the role of elastico-viscous fluids in lubrication is needed. 

The phenomenon of hydrodynamic lubrication, as well as the rheology of 
elastico-viscous lubricants at high shear rates, involves a large number of 
parameters, which complicate experimental investigation and its interpretation. 
In  order to understand better the performance of elastico-viscous lubricants, it 
separate investigation of each parameter and its effect in hydrodynamic lubri- 
cation would be advantageous. For any analytical treatment, approximate 
constitutive equations accounting for the effect of each parameter separately 
are needed. 



Stress relaxatiow effect in elastico-viscous lubricants 503 

3. Relaxation effect in lubrication 
The present study suggests that the stress relaxation effect is a separable 

property of elastico-viscous fluids a t  high shear rates. It is shown that this effect 
leads to a possible explanation of the experimental results. When a fluid particle 
flows along the lubrication film, it is subject to changing shear stresses and shear 
rates. The phase lag between the shear stress and shear rate must affect the 
stress and pressure distribution along the lubrication film. Separate investiga- 
tion of this effect is very important in order to decide whether i t  improves or 
degrades the lubrication. A demonstration of improvement of lubrication would 
mean that the assumption of a very high first normal-stress difference would not 
necessarily be the only one available to explain the experimental results. In  
fact i t  is found that the stress relaxation process does improve the load-carrying 
capacity of the fluid film in gears and rollers. The effect would then be a Deborah- 
number rather than a Weissenberg-number effect. 

Milne (1957) and Burton (1960) recognized first the import'ance of investigating 
separately the effect of stress relaxation in lubrication films. Their studies con- 
tributed to the advance of the research in this subject, but after the progress in 
rheology in recent years, some of their assumptions must be re-examined, 
especially the constitutive equation, since it is not frame invariant and the 
velocity distribution was not derived but assumed. 

The reason why the role of relaxation in lubrication has not yet been 
thoroughly investigated is because available material time derivatives, or 
any combination of them, made it impossible to separate the first normal- 
stress difference and the relaxation process. 

4. Stress relaxation and first normal-stress difference 
The stress relaxation and X,, - S,, are not always independent variables for 

any type of flow. It is well known that in slow flow the two effects are governed 
by the same fundamental parameter. Coleman & No11 (1960) have shown that 
the second-order equation of Rivlin & Ericksen (1 955) represents the first per- 
turbation from Newtonian fluids for slow flows. This second-order equation 
describes the first normal-stress difference and the stress relaxation by the same 
parameter. The connexion between the two effects, in slow flow, is confirmed by 
molecular or suspension models. A Newtonian fluid particle in simple shear is 
subject to tension and compression in the directions 45" from the shear plane. 
At the same time it is rotating and changing its angular position with respect to 
the principal stress components. This is the reason why in elastico-viscous fluids 
'memory' effects account for the first normal-stress difference as well as for the 
phase lag in oscillatory flow. 

In  contrast, it  will be shown that a t  high shear rates, in order to describe the 
real behaviour of elastico-viscous fluids, the two effects must be described by two 
distinct parameters capable of separate experimental determination. The fluid 
time parameter which governs the slow changes cannot any longer describe the 
real normal stresses resulting from the high-speed angular rotation. 
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A careful check on the contribution of each effect in lubrication has shown 
that any one fluid time parameter which described correctly the relaxation 
effect would predict unreasonably high Sxs-S,, values. On the other hand, a 
parameter that described the measured BZx- S,, would practically neglect the 
relaxation effect. Most of the earlier theoretical investigations of hydrodynamic 
lubrication with elastico-viscous fluids assumed the second-order-fluid equation 
for the lubricant. The significance of these analyses has been in detecting the 
effects of the normal stresses in lubrication. Apparently, a separate investigation 
is needed to find the role of the stress relaxation process. 

5. Requirements for constitutive equation 
For separate investigation of the stress relaxation effect, it  is convenient to 

formulate a semi-empirical constitutive equation that will meet the following 
requirements. 

(a )  The constitutive equation must show a phase lag between the stress and 
rate of strain in oscillatory flow. 

(b)  The equation must result in no normal stresses in simple shear flow. 
(c) The relation between the rate of strain and stress in the material must be 

unaffected by the choice of the frame of reference. The response of the material 
must not be changed by an arbitrary rigid rotation or translation of the reference 
co-ordinates. This means that the properties of the material are independent of 
the observer and should not be affected by the particular co-ordinate system, 
at rest or in motion, which happens to be employed. (This requirement in con- 
tinuum mechanics is divided into two principles: co-ordinate invariance and 
material objectivity.) 

(d )  The equation must show isotropy in the rest state because the fluid has no 
preferred directions before its deformation. 

In  order to describe the real physical situation a t  high shear rates, semi- 
empirical constitutive equations can be obtained only by modifying tshe usual 
definitions of the time derivative of the strain-rate tensor. The second-order 
equation, with this new definition for the material time derivative, is found 
to be suitable for the present problem of flow at high shear rates. At the 
same time the new equation complies with the requirements of continuum 
mechanics. 

6. Second-order-fluid equation and material time derivatives 
The second-order-fluid equation of Rivlin & Ericksen (1955) is 

Si = -Pi?,, i- 201, ei + 2a, Dei,/Dt i- 4u, eiaeaj (1) 

(for simplicity, the co-ordinate system is rectangular Cartesian, which is suitable 
for describing the flow in lubrication problems). Here P is the hydrostatic 
pressure and Sij and e i j  are respectively the stress and the rate-of-strain tensor, 
where 

eij = +(av,/ax, + avj/axi), (2) 
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in which the vi are the velocity components and the xi the reference co-ordinates. 
a1 = 7 is the fluid viscosity and a2 and a3 are second-order coefficients of an 
elastico-viscous fluid. There are various definitions for the material time deri- 
vative B{Bt ,  as discussed by Prager (1961). The material time derivatives in 
common use are the covariant and contravariant derivatives of Oldroyd, the 
strain rates of Rivlin & Ericksen and the co-rotational derivative of Jaumann, 
which reads as follows: 

D a - Dt ei = at eij + 3 5  v, - mi, eUi + ei, wuj,  
8% 

(3) 

where the wii are the angular-velocity Components of a fluid particle: 

oij = +(avilax, - avj/axi). (4) 
The material time derivatives have to be invariant under rigid rotation and 

translation of the frame of reference, with respect to the continuum. The rule 
of transformation for a tensor T in one frame of reference to T’ in another, 
relatively rotating, frame is 

where R is the rotation matrix and R* is its transpose. For the co-rotational 
derivative, the same rate-of-strain hensor relative to the material is obtained 
whether eii is in steady or rotating co-ordinates. 

I t  is easy to see that in a rigid co-ordinate system (x,, yl, zl) attached to a 
fluid particle, rotating and moving with it, (3) reduces to a partial time derivative. 
In (xl, yl, zl) co-ordinates we get 

T’ = RTR”, ( 5 )  

(6) w . .  = 0, vi = 0 
ZJ 

and (7) 

The Jaumann derivative [equation (3)] can be derived by transforming the 
partial derivative in (xl,yl,zl) to any arbitrary frame of reference xi. The 
Jaumann derivative is invariant because i t  is defined in the invariant co-ordinates 
(q, y,, xl), attached to a fluid particle and independent of the frame of reference. 

In a simple steady shear flow, 

u = y y ,  v = w = o ,  (8) 
though the flow is steady in time and space, the Jaumann derivative of the strain 
rate is not zero. The reason is the rotation of the fluid particles relative to the 
rate-of-strain tensor. The rotation rate around the z axis is 

w = iy. (9) 

(10) 
It is important to emphasize that a careful check showed the same result for 
all the available time derivatives, or any combination of them. -a&, has the 
dimensions of time and depends only on the fluid. This ratio is called the fluid 
time or relaxation time, and will be denoted by 

For a second-order fluid in simple shear, the Weissenberg number is 

( f L z  - ~ml)ISzlJ = - 2Ya2la1. 

7 = -a2/a1. (11) 
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in (10) yields 
7 is always positive, becau e az is always negative. Substituting (9) and (11) 

(Sxx-Syy~/Szy = 70. (12) 

The previous solutions for lubrication problems involving a second-order fluid 
showed that the pressure distribution and the load capacity are governed by one 
parameter: the ratio -a,/a, (in addition to the viscosity). According to (10) 
this ratio describes the role of the first normal-stress difference along the sheared 
lubrication film. 

With respect to co-ordinates attached to a fluid particle, the lubrication flow 
is unsteady. A fluid particle is subjected to alternating shear rates while passing 
along the bearing. In  a second-order fluid, the relaxation effect in an unsteady 
flow is determined by the same ratio -z.Jzl = r. One can demonstrate this 
effect by the phase lag for a periodic shear rate 

exy = yo cos w1 t .  (13) 

sx, = IS*yl cos (w1t- 4)’ (14) 

where t a n 4  = ( -a2/al)w1 = rw,. (15) 

Substituting (13) in the second-order equation (l), the shear stress is 

Comparison of (12) and (15) indicates that the second-order equation is valid 
only if measurements in steady simple shear and oscillatory shear have the same 
ratio 7. Phase-lag measurements for practical elastico-viscous lubricants give 
fluid times higher than O( 10-4) s. The shear rate in lubrication reaches O( 107) s-l, 
thus the ratio (Sxx-Suy)/Sxy according to (10) is O(103). In  contrast, the maxi- 
mum measured value for this ratio is less than 100. These orders of magnitude 
show that one coefficient ( - az/al = 7) cannot predict the exact orders of magni- 
tude of the two effects at high shear rates. 

Equations (12) and (15) show that in a second-order fluid the first normal- 
stress difference is basically the same ‘memory effect’ as the relaxation, both 
being involved with a fluid time parameter. The reason why the fluid time para- 
meters are not equal a t  the high shear rates of lubrication is that the frequency 
of rotation of the particles is several orders of magnitude higher than the fre- 
quency of periodic changes in a fluid particle passing along the bearing: 

w/wl = o(103-104). (16) 

It may be expected that the elastico-viscous molecular mechanism involved 
at low frequencies is different from that a t  high frequencies of rotation. The 
time required for the fluid to pass along the bearing is O(l /U) ,  where I is the 
length of the lubrication slit and U the circumferential velocity of the bearing. 
The periodic time of the fluid particle rotation is O(h/U) ,  where h is the film 
thickness. The ratio of these two times is O(l /h) ,  therefore the ratio of the fre- 
quencies is O(w/wl )  = O(l/h,). The film thickness in lubrication is very thin, 
O(k/h) = 103-104, which leads to the ratio given in (16). 

Metzner, White & Denn (1966) showed that the second-order approximation 
for a fluid with a ‘memory’ is valid only when the relaxation time 7 is small 
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compared with the characteristic time of the flow At. When the flow is periodic, 
At is of the order of magnitude of the period [At = O(l/w)]. The ratio r/At is 
called the Deborah number NDeb (see Reiner 1964): 

NDeb = O(( - %/%) w1) = O(%). (17) 

For liquids with fluid times 0(10-4) s and w1 = 0(103), the Deborah number 
with respect to the time required for a fluid particle to pass along the bearing is 

TO1 = O(i0-1). (18) 

With respect to the rotation time of a fluid particle, another Deborah number can 
be considered: 

7w = o(103). (19) 

Equation (18) shows that the relaxation effect can be described by the second- 
order equation, since the Deborah number involved is small relative to unity. 
The first normal-stress difference, which is due to the high-speed rotation of the 
particles, must be described by other means. The reason is the relatively high 
Deborah number involved in this effect, according to (19). (Nevertheless, in 
simple steady shear, the second-order equation describes the real behaviour of 
elastico-viscous fluids a t  high shear rates also, because there is only one fre- 
quency of variation of the rate of strain with respect to the rotating fluid particles 
and a single suitable fluid time parameter can be chosen in this case.) 

7. Separation of the relaxation and the fist  normal-stress difference 
In order to separate these two effects, the material time derivative has to be 

defined in other invariant reference co-ordinates. The reference co-ordinates 
suggested here are the principal co-ordinates of the derived tensor. The time 
derivative is defined in a rigid rectangular co-ordinate system (1 ,2 ,3) .  The origin 
of (1 ,2 ,3 )  is attached to the fluid particle and moves with it,  but its directions always 
coincide with the three principal axes of the rate-of-strain tensor. The definition of 
the suggested new tensor dldt is a partial time derivative in the system (1 ,2 ,3)  
attached to the principal axes of the derived tensor: 

d a 
%eii = zeij(l, 2,3) .  

By definition, dldt describes the rate of change of the principal components 
of the derived tensor, being unaffected by the rotation of the principal directions. 
dldt is independent of the choice of the arbitrary frame of reference xi because 
the directions of the principal axes (1 ,2 ,3)  are invariants of this tensor. 

By transforming the derivative dfdt to an arbitrary frame of reference q, 
according to ( 5 ) ,  one gets, in a similar way to the Jaumann derivative, 

d a aeij 
%eij = -eii+-va-Qi,eai+eiaQaj, 

at ax, 

where the Qij are the angular-velocity components of the rigid co-ordinate 
system (1 ,2 ,3)  relative to xi (around the axis xk,  k: # i , j ) .  A formal proof that 
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(21) is invariant under arbitrary rotation of the reference co-ordinates xi is 
given in the appendix. According to (21), the same tensor dldt is obtained for 
eii in either steady or rotating co-ordinates. 

Unlike the Jaumann derivative, the principal directions of the tensors eii 
and deii/dt coincide. The principal components of dldt are the rates of change 
of the principal components eaa in the same directions. 

The usefulness of the new time derivative can be demonstrated by its capa- 
bility of describing the relaxation process alone. In  contrast to all the previous 
material time derivatives, in steady shear flow [equation (S)] deii/dt = 0, be- 
cause the principal axes of eii do not rotate (In = 0). When d/dt is employed in 
the second-order-fluid equation we get 

Cflm - fl l l l l) /f lxll  = 0. (22) 

On the other hand, for a periodic shear rate, the same phase lag according to 
(15) is obtained with the new time derivative d/d t  as with the previous derivatives. 
These results show how d/dt permits separation of the two effects. 

Resolving the angular velocity wii around the axis k # i,j, we have 

wij = In2,j+is$j, (23) 

where wii is the angular velocity of a fluid particle relative to an arbitrary frame 
of reference q, Qij is that of the rigid system (1 ,2 ,3)  relative to xi and W is that 
of the particle relative to (1 ,2 ,3) .  It is important to emphasize that is is inde- 
pendent of the rotation of xi. 

d/dt differs from D / D t  by the terms -Tjiaeaj+eiaWaj.  Since isji and ei j  are 
independent of the frame of reference xi, these terms are also invariant, and 
represent the rate of change of eii due to the rotation Ts. 

Introducing an additional parameter into the second-order fluid, an invariant 
constitutive equation is obtained as follows: 

Sij = -PPSii+2a1eij+2a,deij/dt+2a3( - is iaeaj+eiaWai)+4a4eiaeaj ,  (24) 

where a, is the parameter of relaxation, obtainable from experiments with alter- 
nating rates of strain. The terms involving a3 and a4 describe the first and second 
cross-stress differences. For slow flow az = a3 and (24) reduces to the regular 
second-order equation. -a3/a1 is the fluid time €or high frequency rotation, 
while - a,/al is the relaxation time for the lower frequency linear changes. 

Pearson (1967) showed that, in the equations of flow for thin-film lubrication, 
the elastico-viscous terms are of first and higher order in perturbation expansions 
about the zero-order terms in Reynolds’ equation for non-Newtonian viscous 
fluid. It is possible by this perturbation method to find approximate solutions 
for the contribution of every first-order term separately. Thus, in (24), by retain- 
ing only one of the three terms containing a,, a3 and a4, it is possible to get 
separate perturbation solutions for the relaxation and first and second normal- 
stress differences respectively (their mutual effect being of higher order and 
negligible). 

Moreover, if the experimental values for the relaxation time and cross-stresses 
are accepted, then in lubrication flow the orders of magnitude of the two normal- 
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stress terms are lower than that of the relaxation term. Comparison of the pre- 
vious analytical results with those of the present study indicates that for a2 = a3 
the relaxation and the first normal-stress difference are of the same order in the 
differential equations. (a4 has no effect on the load capacity.) For the measured 
values of the relaxation time, greater than 10-4 s, and €or a Weissenberg number 
0(30), a3 < az and the last two terms involving a3 and a4 can be neglected in 
the first perturbation solution. 

Starting from the constitutive equation (24)  and disregarding the normal- 
stress terms results in 

Sij = - P Sij  + 213 ei - 2137 deij/dt, (35) 

where r = -a2/a, is the fluid time and 13 = a1 is the viscosity. For the first 
extreme case of low pressures and rigid roller surfaces, the fluid coefficients are 
assumed constant. For heavily loaded elasto-hydrodynamic lubrication, the 
viscosity is a function of the hydrostatic pressure. Equation ( 2 5 ) ,  like the second- 
order equation, is the first perturbation to a Newtonian fluid for cases when the 
relaxation time T is small compared with a characteristic time At of a periodic 
change in the flow near a fluid particle. The derivative d/dt considers only 
changes due to the linear velocity of the fluid particle; therefore At, in lubrication, 
is the transit time of a fluid particle along the bearing slit. Thus in the present 
study 

NDeb = T/At = O(TU/l). ( 2 6 )  

8. Differential equation of flow 

hood of the minimum value h, is (see figure 1) 
Assuming rigid rollers for low pressures, the film thickness h in the neighbour- 

h = hm( 1 + x2/2Rhm). (27)  

For gear-teeth or rollers with different radii of curvature, the equivalent radius 
is 

(28)  R-1 = R-1 R-1. 
1 + 2  

The rollers are assumed infinitely long. As the lubricant is incompressible, the 
equation of continuity is 

(29)  

The film’s thickness h [ = 0(h,)] is small compared with its length 1 [ = 0(2Rhm)*]. 
The continuity equation shows that v/u = O(hi / (2R)*) .  Under the usual assump- 
tions of lubrication theory, terms of first and higher order in hm/R are neglected 
throughout, relative to unity, as well as the inertia forces. The equilibrium equa- 
tions are 

aupx + a q a y  = 0. 

4 m , m  = 0, (30) 

where ( ),i denotes the partial derivative with respect to i. Substituting (25)  
into (30) yields the differential equation for steady-state flow, 

92 = TU,Ya/ - V(U.a/zU + u, YYV),Y, (31) 
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FIGURE: 1. Hydrodynamics of cylinder and plane surface. 

while P , ~  may be neglected [being O(hm/R)] .  Employing the dimensionless 

and the ratio 
the flow equation becomes 

I’ = rU/(2Rhm)4, 

- 
u , ~ ~ - -  r(u,geu+u,,,v),, = 2 f ( ~ ) ,  

where h i  
7 U( 2R)* p ” 

2 f ( Z )  = 

I’ is of the order of magnitude of the Deborah number N&b, i.e. the ratio of the 
relaxation time and the order of magnitude of the transit time of a fluid particle 
through the lubrication film. In  the present investigation and NDeb are small 
compared with unity. 

9. Velocity profile 

and retaining the first power only. We write 
To solve for small I? a perturbation method is used, expanding in powers of I’ 

u = uo + rzl + o p ) ,  (36) 
v = -t rq + op ) ,  (37) 

f ( z )  = j0(x) + rfl(z-) + o p ) .  (38 )  
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Substituting (36)-(38) into (34) and equating terms involving corresponding 
powers of I? gives 

EO,go = 2fO(x)7 (39) 

(40) 
- - -  
@',,fig-- ( ~ o , , o ~ o + ~ o , ~ g ~ o ) , ,  = 2f,(Z). 

Denoting the ratio U1lU of the circumferential velocities of the rollers by $ 
and denoting h/h, by z the boundary conditions become 

(41) 

ii0 = 1, G, = o a t  3 = E .  (42) 

q = clo + FP1+ W 2 d  (43) 

and setting hi = 2qi/hm( U + U,) for i = 0,1,  (44) 

- 
Go = +, u1 = 0 a t  jj = 0, 

Expanding the flux in a power series 

the flux of the first and second velocity terms is 

The solution of the velocity equation is 
- a = a0 + ru, = q 4  + pg3 + ?jj3 + 83, 

where 
(46) 

(47) 

10. Bearing force 

we have 
Integrating (31) with respect to x and using the velocity solution (46)-(50), 



-4 - 3  - 2  - 1  0 1 

4 2 R h d  

_ _ _  , r = 0.2; - , r = o .  
FIGURE 2.  Pressure profiles for Newtonian and elastico-viscous lubricants. 

When q4 = 0 pure sliding occurs, while for q4 = 1 there is only rolling. The force 
W is given by 

w = LJ- -co Pax, (52) 

where L is the roller length and xf corresponds to the end of the pressure zone. 
The usual boundary conditions for the pressure wave are 

P=O at x = - m  (53) 

and P = aP/ax = 0 at x = x ~ .  (541, (55) 
The first condition (53) shows that K = 0 in (51). From the two additional 
conditions (54) and (55)  the flux constant Ze and xf have been obtained by 
numerical iteration. 

Figure 2 shows the pressure distributions for both Newtonian (I' = 0) and 
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FIGURE 3. Relative improvement in load capacity. 

elastico-viscous lubricant (I? = 0.2). The results are presented for different 
values of rolling and sliding, represented by the ratio $. The figure demonstrates 
how elasticity of the fluid increases the pressures and the load capacity. The 
relative improvement in the load capacity increases with 9, i.e. the role of 
elasticity of the fluid is more effective in rolling than in sliding (see figure 3). 

11. Elastohydrodynamic lubrication 
In  this section the simplifying assumptions of Ertel-Grubin (see Cameron 

1966) are adopted, and their theory is extended to elastico-viscous lubricants. 
They assumed that the Hertzian shape of surfaces outside the Hertzian contact 
zone is the same as without lubricant, while the film thickness is constant in the 
contact region. 

The width of the Hertz contact region is 2a, where 

and (57) 

E and CT being Young’s modulus and Poisson’s ratio respectively. For 1.1 < a 
the gap width h, is constant and for 1x1 > a 

h = h, + h,, (58 )  
33 F L M  76 
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where 

The variation of the viscosity with pressure is 

r p  = r0eaP ,  

(59) 

yo being the atmospheric pressure viscosity. The solution for the pressure dis- 
tribution is similar to (51) but instead of P we have to write Po, where 

Po = (1 - e-aP)/a. (61) 

I n  heavily loaded rollers CCP is large enough that Po in the contact zone can be 
taken as constant and equal to l/a (hence aPo/ax = 0).  We employ the non- 
dimensional film thickness H and pressure Pz defined by 

For pure rolling ($ = l), P$ in the contact zone is 

Substituting the value of the integral according to Ertel-Grubin we get 

P: = 0*1972H;? + 0 . 4 r ~ ~ 2 .  (65) 

From (63) and (56) we have (for Po = l/a) 

( W/LEr)2 Er L 4 1 
p’ = 6Uy0 (m) ;* 

The relation between the non-dimensional minimum film thickness 

Hm = (LEr/W) hm 

and P$ is shown in figure 4. h, is appreciably larger than the Newtonian gap 
width for highly loaded rollers with small values of H,. 

12. Conclusions 
For the two extreme cases of low and high loads, an increase in the load capacity 

compared with the Newtonian value is obtained. This means an increase in film 
thickness for the same external load. This improvement in lubrication is more 
pronounced for rolling than for sliding and increases rapidly as the film thickness 
decreases, thereby possibly preventing surface failure. 

Appendix 
Rotation invariance 

The following proof shows that the same derivative d/dt (with respect to the 
material) is obtained whether e is in static or relatively rotating co-ordinates. 
It is possible to compare the components of the derivatives at the time when the 
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FIGURE 4. P,* ws. H ,  for Newtonian and elastico-viscous lubricants. 

Y 2 

FIGURE 5 .  Static and rotating co-ordinates. 

static and rotating systems coincide. xi is a static rigid orthogonal co-ordinate 
system, while xi is rotating with angular velocity components toii; see figure 5. 
The rate of-strain-tensor has principal co-ordinates (1 ,2 ,3)  rotating with angular 
velocity components:!& relative to xi. The direction of rotation of x; is counter- 
clockwise, but the direction of the rotation !2 of (1 ,2 ,3)  is clockwise [like the 
rotation of the fluid particle in (4)]. 

(A 1) 

(A 2) 

Defining . ae ae 
at ax, 

e = -+-va, 

(2 1) becomes deldt = i? - Qe + eB , 
33-2 
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Transformation to rotating co-ordinates 

According to the definition (A 2), the last two rotation terms must accompany 
dldt also in x; co-ordinates. But instead of S2 one has to substitute the relative 
angular velocity Q + o of the principal co-ordinates (1 ,2 ,3)  and x;. The time 
derivative in xi is 

de'ldt = 8' - (Q + o) e' + e'(S2 + 6.1). (A 3) 

The rule of transformation is 
e' = ReR*. 

Differentiating with respect to time results in 

8' = R&R * + ReR* -t ReR*.  (A 5) 

At the time when xi and x; coincide (assuming at t = 0)  we have 

R = +  R * = o * .  
Substitution in (A 5 )  yields 

&'(t = 0 )  = B + oe - eo. 

Substituting (A 8) in (A 3) results in identical terms to (A 2). So dldt is indepen- 
dent of o and is thus rotation invariant. 

It is advantageous to show detailed transformation of the two-dimensional 
tensor e. The xi co-ordinate system and (1 ,2 ,3)  are rotating around the axis 
z E z' with angular velocities w and !2 respectively, in the directions shown in 
figure 5.  Thus 

(A 9) 

1 R = [ -sinwt coswt * 

cos wt sin wt 

Performing the transformation and differentiating with respect to time results, 
for t = 0, in 

The additional rotational terms are 
(A 12) -(Q++)e+e(S2++) = ( Q + w )  

Adding (A 12) to (A 11) results in 

This result is independent of w .  
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